Movement in Two Dimensions: This page focuses on several different scenarios involving motion in two dimensions.
Equilibrium and the Equilibrant:
As was said in the study of forces, an object is in a sate of equilibrium with respect to forces when the net force acting on it equals zero. [F(net) = 0 Newtons, in the metric system, or 0 lbs, in the English system.) When an object is in this state of equilibrium, it is either standing still with respect to a reference point or it moving with constant velocity with respect to a reference point. As we have already seen, an object that is in a state of equilibrium will NOT experience an acceleration.
Consider the diagram below. If Vector A and Vector B are added the sum is the resultant. The Equilibrant is the vector that is equal in magnitude to the Resultant, but opposite in direction. When the three vectors, Vector A, B and C are added the sum is 0 Newtons and the object is in a state of equilibrium with respect to the forces acting on it. The object is either at rest or moving with constant velocity. According to Newton's laws of motion and object in a state of equilibrium would not experience any acceleration since the F(net) would be zero newtons.
Read more
No comments:
Post a Comment